Representations of the Weil group 2

§ Abstract Machinery: Let G = profinite group KoG = Grothendisck group of G (i.e. the free abelian group of symbols [P], where $f \in irrep_{sm}(G)$. a.k.a group of virtual representations. Remark: we view the set of iso classes of finite dimensional smooth supresentations of G in Ko F as following: if P is such a sup. $\beta = \beta, \oplus \dots \oplus \beta_n$, to obtain an element in $[\rho] = \sum_{i=1}^{n} [\rho_{i}] \in K_{o}G$ Above of notation: drop the brackets & write P = [9]. I dim map K. G → Z defined in the natural way. Define: KoG:= UKoH and denote its elements as fairs (H,P), where $H \subseteq G$ A $P \in K_0H$. $\Gamma(G) := Hom(G,C^*) \subseteq K_0G$ $\Gamma(G) = U \Gamma(H)$ = K.G. 1) If G' is another profinite group $s.t. G' \rightarrow G$.

then $\widetilde{K}_0G \subseteq \widetilde{K}_0G'$. Enables us to reduce to finite $G = \bigcup_{i} \widetilde{K}_0G_i$ case.

Def" (Induction constants): Let A be an abelian group, & G = profinite
group.

a) In induction constant on & (with values in A) is a function

such that

- i) for each ofm H = G, the map F/KoH is a group homo.
- ii) if $H \subset J$ are open subgroups of G & $(H,P) \in K_0H$ has dimension O, then

$$F(J, Ind_H^J P) = F(H, P)$$

b) A division on G (with values in A) is a function
$$D: F(G) \to A$$

Remarks: An induction constant F give rise to a division DF via restriction and DF is called the boundary of F

Def": A division D on G is called pre-inductive on G if $D = \partial \mathcal{F}$ for some induction constant \mathcal{F} on G.

Lemma: |: An induction constant is completely determined by its boundary ∂F .

Im (F) is contained in the abelian group generated by the values of ∂F .

Proof. Exercise using Brown induction thrown

- · We can reduce to 6 finite
- Let f be an irriducible rep of $H \subset G$ of dim m $[P] m[IH] = \sum_{1 \le i \le n} Ind_{H_i}^H ([X_i] [I_{H_i}])$

for various $(H_i, \chi_i) \in \Gamma(H_i)$. $F(H, P) = \partial F(H_i, \chi_i) \partial F(H_i, \chi$

Remark
$$(H,P) \in K_0G$$
 Let $1_H = \text{trivial character on } H$
Put $R_{G/H} = \text{Ind}_H^G L_H$.
Then $F([P]-m[L_H]) = F([Ind_HP]-m[R_{G/H}])$,
where $m = \dim P$.

Lemma 2. G = pro finite group and let D be a division on G. Suppose there is a family H of open normal subgroups H of G such that

- a) the canonical map $G \rightarrow \lim_{H \in \mathcal{H}} G/H$ is an isomorphism, and
- b) the restriction $\mathcal{D}_{G/H}$ of \mathcal{D} to $\mathcal{F}(G/H)$ is pre-inductive on G/H $\mathcal{F}(G/H)$.

The division D is pre-inductive on G. If \mathcal{F} is an induction constant on G with boundary \mathcal{D} , then $\mathcal{D}_{G/H}$ is the boundary of $\mathcal{F}/\widetilde{K}_{o}(G/H)$.

& Moin statement: Existence of the local constants

Let E/F be a finite separable extension.

For $\Psi \in \hat{F}$, we set $\Psi_E = \Psi \cdot T_{n_{E/F}} \in \hat{E}$

Recall from Ilyana's talk $R_n^{ss}(F) = isomorphism classes of semi-simple$

smooth representations of WF of dimension n.

 $R_n^o(F) =$ irreducible

Workt
$$R^{ss}(F) = \bigcup R_n^{ss}(F)$$
 & $R^{\circ}(F) = \bigcup R_n^{\circ}(F)$

Theorem A: Let $\varphi \in \hat{F}$, $\varphi \neq 1$ de $F \supset E \supset F$, E/F is finite.

There is a unique family of functions: $R^{SS}(E) \longrightarrow C[q^S, q^{-S}]^{\times}$ $S \longmapsto E(P,S, \mathcal{P}_E)$.

with the following properties:

$$\mathcal{E}(\chi_{\circ}\chi_{\mathsf{E}}, \mathcal{S}, \mathcal{Y}_{\mathsf{E}}) = \mathcal{E}(\chi_{\mathsf{S}}, \mathcal{Y}_{\mathsf{E}})$$

where $\alpha_E : \mathcal{W}_E \to E^*$ is the Artin reciprocity map.

$$\mathcal{E}(P_1 \oplus P_2, S, \Psi_E) = \mathcal{E}(P_1, S, \Psi_E) \cdot \mathcal{E}(P_2, S, \Psi_E)$$

3) If
$$P \in R_n^{SS}(E)$$
 and $E > K > F$, then $R_{ElK} = T_{N} \int_{\Sigma_E}^{N_K} 1_{E}$

$$\frac{\mathcal{E}(\text{Ind}_{\mathsf{E}|\mathsf{K}}\mathcal{P}, s, \Psi_{\mathsf{K}})}{\mathcal{E}(\mathcal{P}, s, \Psi_{\mathsf{E}})} = \frac{\mathcal{E}(\mathcal{R}_{\mathsf{E}|\mathsf{K}}, s, \Psi_{\mathsf{K}})^{n}}{\mathcal{E}(\mathcal{L}_{\mathsf{E}}, s, \Psi_{\mathsf{E}})^{n}}$$

The quantity $E(P, S, \Psi)$, $P \in \mathbb{R}^{SS}(F)$ is called the Langlands-Deligne local constant of P, relative to the character $P \in \hat{F}$ 4 complex variable $S \in G$.

We enumerate som of its interesting properties:

Proposition A: Let $\Psi \in \hat{F}$, $\varphi \neq 1$ & $g \in \mathbb{R}^{ss}(F)$. Then:

$$\mathcal{E}(\beta,s,\,\psi) = q^{n(\beta,\,\psi)\,(\frac{1}{2}-s)}\,\mathcal{E}(\beta,\frac{1}{2}\,,\,\psi)$$

$$\mathcal{E}(\beta, s, a \psi) = \text{det } \beta(a) \|a\|^{\text{dim}(\beta)} (s - \frac{1}{2}) \mathcal{E}(\beta, s, \psi)$$

$$n(\beta, \alpha \gamma) = n(\beta, \gamma) + v_F(\alpha) \dim(\beta)$$

c) We have, moreover, a functional equation:

$$\mathcal{E}(\beta, s, \gamma) \mathcal{E}(\beta, 1-s, \gamma) = det \beta(-1)$$

d) There is an integer
$$n_{\rho}$$
 such that if X is a character of F^{*} of level $k \geq n_{\rho}$, then
$$E(\chi \otimes \rho, s, \varphi) = \det \rho(c(\chi))^{-1} E(\chi, s, \varphi)^{\dim \rho},$$
 for any $c(\chi) \in F^{*}$ such that $\chi(1+\chi) = \varphi(c(\chi)\chi)$ $\chi \in \mathfrak{P}^{[k/2]+1}$.

We will use the abstract machinery in the following context:

Let LIF be finite and Galois, but G = Gal(LIF).

Now $F(G) = U\Gamma(H)$, but H = Gal(LIE), for H = G

 $\Gamma(H) = Hom (H, \mathbb{C}^*) = Hom (H^{ab}, \mathbb{C}^*)$ but $H^{ab} \simeq E^*/N_{HE}(L^*)$ (by local class field they).

So we think of $\widetilde{F}(G)$ as the set of bairs (E,X) where E rranges over fields between L&F, X over denastes of E° which are null on $N_{EIE}(L^*)$.

We assume the next result to prove theorem A & Prop-A.

 \S Step \bot : removing restriction on φ .

Recall: if $\Psi: F \to \mathbb{C}^*$ is a non-trivial character then all characters of F are of the form $\Psi(x) = \Psi(\alpha x)$ for unique $\alpha \in F^*$.

By lemma 2 & theorem B, the division

$$\mathcal{D}_{\varphi}^{L/F}:(E,\mathcal{X})\mapsto \mathcal{E}(x,s,\mathcal{Y}_{E})$$

y pre-inductive on $\Omega_F = Grad(F/F) = \lim_{L/F} Gral(L/F)$ L/F finite

Ctalois

= $\lim_{L/F} \Omega_F/\Omega_L$ L/F finite

Galois

By lemma I we see that $D_{\varphi}^{L/F}$ is the boundary of the induction constant defined by

 $(\Omega_{E}, P) \mapsto \mathcal{E}(P, s, P_{E})$

Claim!: For $a \in F^*$ the following function

$$\widetilde{\mathbb{K}}^{\circ}_{\bullet} \widetilde{\mathbb{D}}^{\mathsf{F}}_{\bullet} \overset{\circ}{\longrightarrow} \widetilde{\mathbb{C}}^{\mathsf{K}}_{\bullet} \overset{\circ}{\longrightarrow} \widetilde{\mathbb$$

 $(E,P) \mapsto dt P(a) \|a\|_{E}^{(S-\frac{1}{2})dimP}$

is an induction constant on $\Omega_{\rm F}$

* The first property is clear to verify

A The second property follows from the "transfer theorem

K/E is finte Galois
$$W_{K}^{ab} \sim K^{*}$$
 $V_{WK/E}^{ab} \sim E^{*} \rightarrow F^{*}$

and the following: det Ird KIEP = det P = Ver KIE

So we conclude that $(E,P) \longmapsto \det P(a) \|a\|_{E}^{(S-\frac{1}{2})} \dim P$ $\mathcal{E}(P,s,\Psi_{E})$

is also an induction constant on Ω_F

The boundary of this induction constant is:

$$(E,\chi) \mapsto \chi(a) \|a\|_{E}^{(S-\frac{1}{2})} E(\chi,s,\varphi_{E}) = E(\chi,s,\alpha\varphi_{E})$$

This division is pre-inductive, and the boundary of the induction constant $(E,P) \mapsto E(P,s,a\,P_E)$ (by definition).

Theorem B holds for all $\Psi \in \widehat{F}$, $\Psi \neq 1$. This along with luma 2 finishes the proof of theorem A for representations of Galois groups.

Now we prove <u>Proposition A (1), (2)</u> for representations of Galois groups. Rual that E-factors of characters society the following relation:

$$\mathcal{E}(\chi, s, \psi) = q^{\left(\frac{1}{2} - s\right) n(\chi, \psi)} \mathcal{E}(\chi, \frac{1}{2}, \psi)$$

for some $n(X, P) \in \mathbb{Z}$. Thus by lemma I was conclude (1).

To prove (2) we note the following

 $\mathcal{E}(P,s,a\varphi) = q^{n}(P,a\varphi)(\frac{1}{2}-s)\mathcal{E}(P,\frac{1}{2},a\varphi) \qquad (by(1))$

& ε(P, s, a φ) = del (P(a)) ||a||dim(P)(s-½) q, m(P, φ)(t-s) ε(P, ½, φ)

which implies (2) by comparison

§ Step 2: Extend these results to reps of Will gps.

Fix to a uniformizer of F. Let $\phi \in \hat{F}^*$ be unramified with $\phi \in \hat{F}^*$ be unramified with $\phi \in \hat{F}^*$ be unramified the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}^*$ be unramified the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}^*$ be unramified the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}^*$ be unramified the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}^*$ be unramified the solution $\phi \in \hat{F}^*$ by the solution $\phi \in \hat{F}$ by the soluti

Thus if $\chi \in \hat{\Xi}^*$, we have $\mathcal{E}(\chi \phi_E, s, \Psi_E) = \mathcal{E}(\chi, s+s(\Phi), \Psi_E) \quad (\chi_{avier's}, falk).$

We want to extend this identity to representations:

Claim 2: Let $(\Sigma_E, \beta) \in K_\delta \Sigma_F$, let $\phi \in \hat{F}$ be unamified + of finite order. Then $\mathcal{E}(\phi_E \otimes \beta, s, \phi_E) = \mathcal{E}(\beta, s + s(\phi), \phi_E)$.

Perof: They are both induction constants with the same boundary, hence by lemma! they are equal.

Now let $\underline{1}_{\rm E}$ be the trivial character of the Weil group $\mathcal{W}_{\rm E}$ and define

$$\lambda_{E/F}(s, \varphi) = \frac{\mathcal{E}(\text{Ind}_{W_E}^{W_F} \mathbf{1}_{E}, s, \varphi)}{\mathcal{E}(\mathbf{1}_{E}, s, \varphi_E)}$$

Corollary: $\lambda_{EIF}(s, \Psi)$ is constant in s.

Proof: Let \$ € F unramified of finite order. We have

\$ © Ind WF 1 = Ind WF \$ =

$$\lambda_{E/F}(s, \varphi) = \frac{\mathcal{E}(\text{Ind}_{W_E}^{W_F} \varphi_E, s, \varphi)}{\mathcal{E}(\varphi_E, s, \varphi_E)}$$

$$= \frac{\mathcal{E}(\text{Ind}_{W_E}^{W_F} \varphi_E, s, \varphi_E)}{\mathcal{E}(\underline{\uparrow}_E, s + s(\varphi), \varphi_E)}$$

$$= \lambda_{E/F} \left(s + s(\phi), \varphi_{E} \right)$$

Thus, $\lambda_{EIF}(s+s(4), \Psi) = \lambda_{EIF}(s, \Psi)$ for all unramified characters & of firsts order. That is $\lambda_{EIF}(s+3, \Psi) = \lambda_{EIF}(s, \Psi)$ for all roofs of unity $3 \in \mathbb{C}$.

From representations of Weil groups to reps. of Galois group.

Because of additivity its enough to consider irrep smooth of W_E . Let $\rho \in \operatorname{irrep}_{sm}(W_E)$.

Claim: there is an unramified character ϕ of \mathcal{N}_{F} such that $\phi_{\mathsf{E}} \otimes \rho$ factors through a representation f_{e} of Ω_{E} .

 $\underline{Stip \perp}$: $f(I_E)$ is a finite subgroup of GL(V).

Step 2: Conjugation action of Fulurius on the finite image S(IE) has firste order:

Frob_E \in WE be a frobenius, conjugation by Frob_{E} include an isomorphism of I_{E} . Induces $P(\text{Frob}_{\text{E}})$ automorphism of $P(I_{\text{E}})$, thus it is first order:

S(x) >> S(Frobe) S(x) S (Frobe) has frite order. do 7 k ≥ 1 s.t. Y x ∈ IE we hour g (hobe) g(a) g (hobe) = P(a) So $\beta(\operatorname{Frob}_{\mathsf{F}})^k$ committee with all $\beta(\mathsf{I}_{\mathsf{E}})$. f (Frob €) k commutes with f(WE). P(Fromb) ← Cent (P(WE))

Step 4: Schurs lemma: S(Frob E) is scalar since 9 is irreducible, schur's lemma says that any linear endomorphism of V that commutes with the whole image $f(W_E)$ is a scalar multiple of identity. Theofore I cet with P (Fronte) = c. Idy

Step 5: Choose an unanified chanceter to kill the scalar c.

7: NE > C' trivial on IE so $\chi(frob_E)$ delermine χ

we want $X = c^{-1}$

so we take X (Frobe) = kt rook of c'

step 6: XOP has finite image.

consider the twist $(\chi \otimes P)(g) = \chi(g) P(g)$

 $\chi(F_{nob}_{E})^{k}P(F_{nob}_{E})^{k}=C^{-1}\cdot C\cdot Id_{V}=Id_{V}.$

Henre (X 69) (Frob E) has first order dividing k.

→ (X&S)(WE) is finite.

Alek 7: Factorization through a finite quotient.

If the image of a continuous homo. $W_E \to GL(V)$ is first, then its kernel is open normal subgroup of W_E of finite index.

So 3 K/E finite Galois s.l.

WE/ker (X OV) ~ SLE/ ~ Gal (K/E)

Thus we reduced it to the Galois case.

The donaster X: WE 7 6° can be thought of as a character of X: E" - C* where \$ is a character $\chi = \phi \circ N_{E/F}$

Define: $\mathcal{E}(\beta, s, \mathcal{Y}_{E}) = \mathcal{E}(\beta_{0}, s - s(\beta), \mathcal{Y}_{E})$

The first two properties of theorem A are easy to check. we verify:

3) If $P \in R_n^{SS}(E)$ and E > K > F, then

$$\frac{\mathcal{E}(\text{Ind}_{\mathsf{E}|\mathsf{K}}\mathcal{P}, s, \Psi_{\mathsf{K}})}{\mathcal{E}(\mathcal{S}, s, \Psi_{\mathsf{E}})} = \frac{\mathcal{E}(\mathcal{R}_{\mathsf{E}|\mathsf{K}}, s, \Psi_{\mathsf{K}})^{n}}{\mathcal{E}(\mathcal{L}_{\mathsf{E}}, s, \Psi_{\mathsf{E}})^{n}}$$

nee know for representations of Galois group that this identity is here. So if $\phi_{E} \otimes \beta$ factorises through a rep of Galois group \$ & Trid EIK S = Tridelk PESS then the same holds for

$$\begin{array}{lll}
\varepsilon\left(\text{Fider}\, P, S, \Psi_{K}\right) & \varepsilon\left(\text{Fider}\, S_{0}, S - S(\varphi), \Psi_{K}\right) \\
\varepsilon\left(P, S, \Psi_{E}\right) & \varepsilon\left(P_{0}, S - S(\varphi), \Psi_{E}\right) \\
& = \varepsilon\left(\text{Kerk}, S - S(\varphi), \Psi_{F}\right)^{n} \\
& \varepsilon\left(\text{Le, S - S(Q), }\Psi_{E}\right)^{n} \\
& \varepsilon\left(P_{E}, S, \Psi_{E}\right)^{n}
\end{array}$$

This frishes the proof theorem A.

Let us now prove proposition A for representations of Weil group. 3) Functional equation: for Galois cax its clear because $(\Sigma_{E}, \tau) \mapsto \begin{cases} \varepsilon(\tau, s, \Psi_{E}) \varepsilon(\check{\tau}, l-s, \Psi_{E}) \\ \text{det } \tau(l) \end{cases}$

are both induction constants on K. SZF with boundary

$(E, \phi) \mapsto \varepsilon(\phi, s, \psi) \varepsilon(\tilde{\phi}_{1} - s, \psi) = \phi(-1)$

They there two induction constants are the same.

It is enough to treat Galois case because of the definition of E-factor.

Thrown B LIF first Galois of non auch local fields. G= Gal (L/F).

I L/F of global fields and a non-archimedran

- 1) 3! plan u_o of L over v_o s.t. $L_{u_o} \simeq L$ which in dum $F_{v_o} \cong F$
- 2) G = Gal (4/F) canonically.

so for any intermediate field E, $F \subset E \subset L$ then is a unique field E, $F \subseteq E \subseteq L$ with those E in $L - L \cup v_o$.

Fix a non-third character Ψ of A_F/F and for E set $\Psi_E = \Psi \circ T_{77}E/F$.

Put $P = \Psi_{V_0}$. $G = Gal(L/F) \simeq Gal(L/F) = GF$ we have a bijution $F(G) \cong F(G)$ $E(X) \mapsto (E, X)$ X is a characler of AE/E^{X} trivial on norms $N_{L/E} = \frac{A^{X}_{L}}{L^{X}_{L}}$.

Union: there exist a characler $X = \frac{A^{X}_{L}}{L^{X}_{L}} =$

Unin: the exist a chandle $\propto \delta \int_{\mathbb{R}} A_F^* / F^*$ All that $\alpha_E = \alpha \circ N_E / F$ $\mathcal{E}(\mathcal{X}_{\omega} \times_{E,\omega}, S, \mathcal{Y}_{E,\omega}) = \int_{\mathbb{R}} \mathcal{X}_{\omega} (c_{\omega})$