Introduction

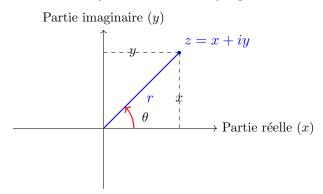
Les nombres réels peuvent être représentés sur une droite orientée, appelée droite réelle. Chaque nombre réel x correspond à un point sur cette droite. Pour étendre cette idée aux nombres complexes, on introduit le **plan complexe**, dans lequel chaque nombre complexe z = x + iy est associé à un point (x, y) dans le plan.

1. Représentation graphique d'un nombre complexe

Un nombre complexe z = x + iy possède :

- sa partie réelle x, correspondant à la coordonnée horizontale ;
- sa partie imaginaire y, correspondant à la coordonnée verticale.

Ainsi, le plan complexe s'identifie au plan usuel (O, \vec{i}, \vec{j}) , où l'axe horizontal (axe des abscisses) représente les réels, et l'axe vertical (axe des ordonnées) représente les imaginaires purs.



2. Module et argument

• Le **module** de z, noté |z|, est la distance du point M(x,y) à l'origine O:

$$|z| = \sqrt{x^2 + y^2}.$$

• L'argument de z, noté $\arg(z)$ ou θ , est l'angle orienté que fait le vecteur \overrightarrow{OM} avec l'axe réel positif. On a alors la relation trigonométrique

$$\tan(\theta) = \frac{y}{x}$$
, pour $x \neq 0$.

Ainsi, tout nombre complexe peut s'écrire sous forme polaire :

$$z = |z| (\cos \theta + i \sin \theta) = |z|e^{i\theta}$$

3. Propriétés géométriques principales

- Addition : La somme de deux nombres complexes correspond à la somme vectorielle de leurs représentations dans le plan.
- Multiplication : Multiplier deux nombres complexes revient à multiplier leurs modules et à additionner leurs arguments :

$$z_1 z_2 = |z_1||z_2|e^{i(\theta_1 + \theta_2)}.$$

Géométriquement, c'est une rotation d'angle θ_2 suivie d'une homothétie de rapport $|z_2|$.

• Conjugué : Le conjugué $\overline{z} = x - iy$ est le symétrique de z par rapport à l'axe réel.

• Inverse : Si $z \neq 0$, alors

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2},$$

c'est-à-dire que l'inverse de z a le même argument opposé et un module inverse de celui de z.

Conclusion

En résumé, la représentation graphique d'un nombre complexe prolonge la droite réelle en un plan. Le module correspond à la longueur du vecteur associé, et l'argument correspond à son angle avec l'axe des réels positifs. Ces notions permettent d'interpréter les opérations sur les complexes comme des transformations géométriques : translations, rotations et homothéties.

RACINES CARRÉES

Étant donné un nombre complexe $z \in \mathbb{C}$, on cherche à calculer ses racines carrées, c'est-à-dire tous les nombres complexes w tels que $w^2 = z$. On présente ci-dessous deux méthodes classiques : une méthode algébrique (cartésienne) et une méthode trigonométrique (ou polaire). Les deux donnent les mêmes deux valeurs (opposées l'une à l'autre), et on inclut de courts exemples.

4. MÉTHODE ALGÉBRIQUE (CARTÉSIENNE)

On écrit

$$z = x + iy, \qquad x, y \in \mathbb{R},$$

et on cherche w = u + iv avec $u, v \in \mathbb{R}$ tel que

$$(u+iv)^2 = x+iy.$$

En développant et en identifiant les parties réelles et imaginaires, on obtient

$$u^2 - v^2 = x,$$

$$2uv = y$$
.

On introduit également le module $r=|z|=\sqrt{x^2+y^2}$. En additionnant les carrés des deux équations on élimine le signe :

$$(u^2 - v^2)^2 + (2uv)^2 = x^2 + y^2 = r^2.$$

Mais le membre de gauche vaut $(u^2 + v^2)^2$, donc

$$u^2 + v^2 = r.$$

Les inconnues u^2 et v^2 satisfont alors le système linéaire

$$u^2 - v^2 = x.$$

$$u^2 + v^2 = r.$$

D'où

$$(1) u^2 = \frac{r+x}{2},$$

$$(2) v^2 = \frac{r - x}{2}.$$

Pour retrouver u et v, on prend les racines carrées. Le signe doit vérifier 2uv = y, donc on choisit les signes de sorte que $\operatorname{sgn}(uv) = \operatorname{sgn}(y)$ (si $y \neq 0$). Une formule explicite standard pour les deux racines est

(3)
$$w = \pm \left(\sqrt{\frac{r+x}{2}} + i \operatorname{sgn}(y) \sqrt{\frac{r-x}{2}}\right),$$

où
$$\operatorname{sgn}(y) = \begin{cases} +1 & y \ge 0, \\ -1 & y < 0. \end{cases}$$

TD CHAP 3 3

Remarques.

- Si y = 0 et $x \ge 0$, alors z = x est réel positif et la formule donne les deux racines réelles $\pm \sqrt{x}$.
- Si y = 0 et x < 0, alors r = |x| = -x et la formule donne u = 0, $v = \pm \sqrt{-x}$, donc les racines sont purement imaginaires : $\pm i\sqrt{|x|}$.
- Les quantités de (1) et (2) sont non négatives car $r \ge |x|$, donc les racines réelles existent toujours.

Exemple (algébrique). Pour z = 3 + 4i, on a $r = \sqrt{3^2 + 4^2} = 5$. Alors

$$u^2 = \frac{5+3}{2} = 4, \qquad v^2 = \frac{5-3}{2} = 1.$$

Comme y = 4 > 0, on prend u = 2 et v = 1. Ainsi

$$w = \pm (2+i), \quad (2+i)^2 = 3+4i.$$

5. MÉTHODE TRIGONOMÉTRIQUE (POLAIRE)

On écrit le nombre complexe sous forme polaire :

$$z = r e^{i\theta} = r(\cos\theta + i\sin\theta),$$

avec $r=|z|\geq 0$ et $\theta=\arg(z)$ (argument principal dans $(-\pi,\pi]$). Si $w^2=z$ et $w=\rho e^{i\phi}$, alors

$$\rho^2 e^{2i\phi} = re^{i\theta}$$
.

On en déduit

$$\rho^2 = r \quad \Rightarrow \quad \rho = \sqrt{r},$$

 et

$$2\phi \equiv \theta \pmod{2\pi} \quad \Rightarrow \quad \phi \equiv \frac{\theta}{2} \text{ ou } \phi \equiv \frac{\theta}{2} + \pi.$$

Ainsi, les deux racines carrées sont

(4)
$$w = \pm \sqrt{r} e^{i\theta/2} = \pm \sqrt{r} \left(\cos\left(\frac{\theta}{2}\right) + i\sin\left(\frac{\theta}{2}\right)\right).$$

(Les deux signes correspondent aux deux racines opposées.)

Choix de l'argument. Si θ est l'argument principal $\arg(z) \in (-\pi, \pi]$, alors $\theta/2 \in (-\frac{\pi}{2}, \frac{\pi}{2}]$ et $\sqrt{r}e^{i\theta/2}$ est la racine carrée principale de z.

Exemple (polaire). Pour z = 3 + 4i: r = 5 et $\theta = \arctan(4/3)$. On obtient

$$w = \pm \sqrt{5} e^{i\theta/2} = \pm \sqrt{5} \left(\cos\left(\frac{\theta}{2}\right) + i\sin\left(\frac{\theta}{2}\right)\right).$$

Numériquement, $\sqrt{5}\cos(\theta/2) = 2$ et $\sqrt{5}\sin(\theta/2) = 1$, donc on retrouve $\pm(2+i)$.

CONCLUSION

Les deux méthodes sont équivalentes : la méthode algébrique fournit une formule cartésienne explicite, utile pour les calculs directs, tandis que la méthode polaire est plus naturelle pour les manipulations théoriques et les représentations géométriques.

Exercice 3.9

Soit f la fonction d'une variable réelle à valeurs complexes définie par

$$f: t \longmapsto e^{it}$$
.

On demande de donner un ensemble de départ et un ensemble d'arrivée les plus grands possible qui rendent f bijective.

Solution

L'image de f est le cercle unité $S^1=\{z\in\mathbb{C}:|z|=1\}...$

1. Image de f. Pour tout $t \in \mathbb{R}$, on a $|e^{it}| = 1$, donc l'image de f est le **cercle unité**:

$$\operatorname{Im}(f) = S^1 = \{ z \in \mathbb{C} : |z| = 1 \}.$$

Ainsi, pour que f soit surjective, l'ensemble d'arrivée maximal possible est

$$A = S^1$$
.

2. Étude de l'injectivité. La fonction f est 2π -périodique : pour tout $t \in \mathbb{R}$ et tout $k \in \mathbb{Z}$,

$$e^{i(t+2\pi k)} = e^{it}$$

Elle n'est donc pas injective sur \mathbb{R} . Pour qu'elle le devienne, il faut choisir un sousensemble $D \subset \mathbb{R}$ contenant exactement un représentant de chaque classe de congruence modulo 2π . Autrement dit, on cherche un système de représentants de $\mathbb{R}/(2\pi\mathbb{Z})$.

3. Choix d'un domaine de départ bijectif. Un choix simple consiste à prendre un intervalle de longueur 2π sans les deux extrémités simultanément :

$$D = [0, 2\pi)$$
 ou bien $D = (-\pi, \pi]$.

Sur un tel intervalle, la fonction f est injective, et comme son image est S^1 , la restriction de f à D est **bijective** sur S^1 .

4. Maximalité. - L'ensemble d'arrivée maximal pour la surjectivité est $A = S^1$ (on ne peut pas avoir plus grand car $f(\mathbb{R}) = S^1$). - L'ensemble de départ maximal pour l'injectivité est tout système de représentants de $\mathbb{R}/(2\pi\mathbb{Z})$. Parmi les ensembles concrets, les intervalles de longueur 2π comme $[0,2\pi)$ ou $(-\pi,\pi]$ sont les choix naturels. On ne peut pas prendre un intervalle plus long, car il contiendrait deux réels t_1 et t_2 tels que $t_1 - t_2 = 2\pi k$ pour un $k \neq 0$, et donc $e^{it_1} = e^{it_2}$, ce qui détruirait l'injectivité.

5. Inverse explicite. Avec $D = [0, 2\pi)$ et $A = S^1$, la bijection est

$$f:[0,2\pi)\to S^1, \qquad t\mapsto e^{it}.$$

Son inverse est la fonction argument principal:

$$f^{-1}: S^1 \to [0, 2\pi), \qquad e^{i\theta} \mapsto \theta \text{ (pris dans } [0, 2\pi)).$$

C'est la fonction arg(z), qui est bien définie sauf pour les discontinuités en z=1.

RÉPONSE CONCISE

Un choix naturel et explicite est :

$$D = [0, 2\pi)$$
 et $A = S^1 = \{z \in \mathbb{C} : |z| = 1\}$

La restriction $f:[0,2\pi)\to S^1$, $t\mapsto e^{it}$, est bijective. Plus généralement, tout système de représentants de $\mathbb{R}/(2\pi\mathbb{Z})$ rend la fonction bijective sur S^1 .

Exercice 3.10

Calculer le module et l'argument de $(1+i)^n$. En déduire les valeurs des sommes

$$S_1 = \sum_{m>0} (-1)^m \binom{n}{2m}$$
 et $S_2 = \sum_{m>0} (-1)^m \binom{n}{2m+1}$,

où les sommes s'arrêtent évidemment lorsque les indices dépassent les bornes (c'est-à-dire $2m \le n$ et $2m + 1 \le n$).

TD CHAP 3 5

Solution

1. Module et argument de $(1+i)^n$.

On écrit d'abord la forme polaire de 1+i. On a

$$1 + i = \sqrt{1^2 + 1^2} e^{i \arg(1+i)} = \sqrt{2} e^{i\pi/4},$$

puisque $\arg(1+i)=\pi/4$ (point dans le premier quadrant). Par conséquent, pour tout entier n,

$$(1+i)^n = (\sqrt{2})^n e^{in\pi/4} = 2^{n/2} e^{in\pi/4}.$$

On en déduit directement que

$$|(1+i)^n| = 2^{n/2}, \quad \arg((1+i)^n) \equiv \frac{n\pi}{4} \pmod{2\pi}.$$

2. Calcul des sommes S_1 et S_2 .

Développons $(1+i)^n$ par la formule du binôme :

$$(1+i)^n = \sum_{k=0}^n \binom{n}{k} i^k.$$

Séparons les contributions d'indice pair et impair. Pour k=2m on a $i^{2m}=(-1)^m$, et pour k=2m+1 on a $i^{2m+1}=(-1)^mi$. D'où

$$(1+i)^n = \sum_{m>0} \binom{n}{2m} (-1)^m + i \sum_{m>0} \binom{n}{2m+1} (-1)^m = S_1 + iS_2.$$

Mais nous avons aussi l'expression polaire obtenue plus haut :

$$(1+i)^n = 2^{n/2} (\cos(n\pi/4) + i\sin(n\pi/4)).$$

En identifiant parties réelles et imaginaires, on obtient les formules souhaitées :

$$S_1 = 2^{n/2} \cos\left(\frac{n\pi}{4}\right), \qquad S_2 = 2^{n/2} \sin\left(\frac{n\pi}{4}\right).$$

Remarque. Ces formules valent pour tout entier $n \ge 0$ (et restent valides formellement si l'on souhaite étendre la notion aux entiers relatifs en adaptant la convention pour les binomiaux). On peut vérifier des cas particuliers simples :

- Pour n = 0: $S_1 = 1$ et $S_2 = 0$, d'après $(1+i)^0 = 1$.
- Pour n = 1: $S_1 = 1$ et $S_2 = 1$, d'après (1 + i) = 1 + i.
- Pour n = 2: $(1+i)^2 = 2i$ donc $S_1 = 0$, $S_2 = 2$. Les formules donnent $2^1 \cos(\pi/2) = 0$ et $2^1 \sin(\pi/2) = 2$.

Exercice 3.11

Soit M(x,y) un point du plan \mathbb{R}^2 muni d'un repère orthonormé direct. On rappelle que z=x+iy est l'affixe du point M. Soit $w\in\mathbb{C}^\times$ et $k\in\mathbb{R}$. On considère

$$D_{w,k} = \{ M \in \mathbb{R}^2 \text{ d'affixe } z : \overline{w}z + \overline{z}w = k \}.$$

Montrer que $D_{w,k}$ est une droite du plan. Reciproquement, soit D une droite du plan. Montrons qu'il existe $w \in \mathbb{C}^{\times}$ et $k \in \mathbb{R}$ tels que $D = D_{w,k}$.

Solution

Écrivons w = a + ib avec $a, b \in \mathbb{R}$ (et $w \neq 0$). Pour z = x + iy on calcule

$$\overline{w}z = (a - ib)(x + iy) = (ax + by) + i(ay - bx).$$

En sommant avec son conjugué on obtient

$$\overline{w}z + \overline{z}w = 2(ax + by).$$

L'équation définissant $D_{w,k}$ devient donc

$$2(ax + by) = k,$$

ou encore

$$ax + by = \frac{k}{2}.$$

Il s'agit précisément de l'équation cartésienne d'une droite du plan (le vecteur normal à cette droite est (a,b)). Puisque $w \neq 0$, le couple (a,b) n'est pas nul, la droite est bien définie et non dégénérée.

Remarques géométriques.

- La droite $D_{w,k}$ est orthogonale au vecteur d'affixe w = a + ib (ou au vecteur réel (a,b)).
- Elle est à distance

$$\frac{|k/2|}{\sqrt{a^2 + b^2}} = \frac{|k|}{2|w|}$$

de l'origine O, où $|w| = \sqrt{a^2 + b^2}$.

• Si k = 0, la droite passe par l'origine et s'écrit ax + by = 0, c'est-à-dire la droite orthogonale à w passant par O.

Ainsi $D_{w,k}$ est bien une droite du plan, comme souhaité.

Réciproque. Comme D est une droite non dégénérée, on peut écrire son équation cartésienne sous la forme

$$ax + by = c$$
,

avec $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et $c \in \mathbb{R}$. Posons alors

$$w = a + ib \in \mathbb{C}^{\times}$$
 et $k = 2c \in \mathbb{R}$.

Pour tout z = x + iy on a, comme précédemment,

$$\overline{w}z + \overline{z}w = 2(ax + by).$$

Ainsi z satisfait $\overline{w}z + \overline{z}w = k$ si et seulement si 2(ax + by) = 2c, c'est-à-dire ax + by = c. On obtient donc exactement

$$D_{w,k} = \{z : \overline{w}z + \overline{z}w = k\} = \{(x,y) \in \mathbb{R}^2 : ax + by = c\} = D.$$

Cela termine la preuve de la réciproque.

Remarque sur l'unicité. Si (w, k) conviennent, alors pour tout $\lambda \in \mathbb{R}^{\times}$ le couple $(\lambda w, \lambda k)$ convient aussi, puisque

$$\overline{(\lambda w)}z + \overline{z}(\lambda w) = \lambda(\overline{w}z + \overline{z}w) = \lambda k.$$

Autrement dit, l'expression $\overline{w}z + \overline{z}w = k$ représente la même droite si l'on multiplie w et k par un même scalaire réel non nul. En revanche, multiplier w par un scalaire complexe non réel change la direction normale et n'expose pas en général la même droite sans ajuster convenablement k.